STRONG PROJECT CONSORTIUM
15 COMPANIES

INNOVATIVE LOGISTICS CONCEPTS
FOR URBAN ENVIRONMENTS

ELECTRIC VEHICLES OPTIMIZED FOR
DISTRIBUTION IN CITIES

Boschidar Ganev – AIT Mobility Department, Electric Drive Technologies

ELOCOT – Conference on Electromobility in Logistics and Commercial Transport, 10th June 2015
Challenges from road transport

- Transport accounts for 24.3% of EU GHG emissions (2012)
- EU GHG emissions from transport and other sectors, 1990-2012: +36%
- EU dependency on imported energy

Drivers of increased freight traffic

- Online shopping
- Increasing customer demands
- Globalization of trade

Increase in freight traffic

Development of freight transport in Austria

Quelle: BMVIT, „Gesamtverkehrsplan für Österreich“, 2012, Seite 24
Policies & Goals

- EU White Paper on Transport: 60% transport GHG reduction by 2050
 - Halve the use of „conventionally fuelled“ cars in urban transport by 2030 (phase out by 2050)
 - Achieve essentially CO2-free city logistics in major urban centres by 2030

- EU 20-20-20 climate and energy goals
 - Reduce energy consumption through efficiency measures

- Fuel quality: cut GHG intensity of vehicle fuels by 10%
Cities and urban areas as a focal point

- 75% of the EU population lives in cities
- 85% of GDP generated in cities
- 20% of traffic in European cities is due to freight transport
- 11% of CO₂ emitted in Austria is due to road-based freight transport

- New logistics concepts and technological optimizations needed to make freight transport in urban environments cleaner and more efficient
Focal points of the project

- **Innovative freight logistics** for urban environments, specifically geared towards the significant use of **electric vehicles**:
 - Optimize vehicle technologies to increase range and lower costs
 - Develop new logistics concepts and planning methods
 - Demonstrate the technological feasibility and cost effectiveness of the use of electric vehicles in urban logistics
 - Open Innovation to actively involve external stakeholders
Together, 15 leading Austrian companies are developing innovative concepts for urban logistics.

- Combined fleet of 1500 vehicles covering 64 million km per year
- ~12,500t CO₂e per year
Vehicle technologies:
Cargo tricycle

- Existing prototype with tilting technology
- Aim: optimization as a cargo transporter

EMILIA: development of an electric powertrain
- Energy efficient motor, inverter, transmission
- Pedal power boosted by electric motor

Advantages:
- Permitted as a bicycle in Austria
- Flexibility in the city (e.g. pedestrian zones, parking)
- Faster delivery
- Loading capacity: ~100kg / ½ Euro Palette
- Target range 80-90 km (level terrain, incl. cargo + driver)

Last mile delivery
- Inner City (food/grocery delivery)
- Package loading at stationary or mobile hubs
Starting point: modified Skoda Roomster (EVC)

EMILIA improvements
- Realization of an optimized electric powertrain for a light utility vehicle
- Implementation of the optimized powertrain in an existing EVC Skoda Roomster

Electric motor
- Cost reduction by 10%
- Weight reduction by 20%

Loss-loss inverter

Range extension of the EV by 15%
Vehicle technologies:
Citylog - Road train

- **HET Citylog** – road train with modular buildup
 - Hydrogen hybrid drive
 - All wheel steering
 - Electronic coupling
 - Payload 2.2t

- **EMILIA improvements**
 - Design of a lightweight structure (25%-30% lighter than 1st prototype)
 - Development of an innovative „steer by wire“ all-wheel steering
 - Extension of vehicle range
Each of the three EMILIA vehicles is modeled and simulated.

What can be calculated and analyzed:
- Energy consumption (driving range) under different driving cycles
- Energy consumption of each vehicle component
- Driving range (different driving scenarios: e.g. ambient temperature)

Vehicle Model – examples of parameters considered:
- AirConditioning
- Chassis (drag, rolling and climbing resistance)
- ElectricalSources (simple battery and e-machine models)
- Environments (ambient and cycle blocks)
- Transmissions (automatic and NuVinci)
- Treadles (human power)
- Examples (CargoBike, SkodaRoomster and Cytilog)

Data passed to routing application.
Focus on:
- Food delivery
- Parcel delivery services
- Pharmaceutical logistics

Ideas under consideration:
- Sustainable logistics for regional produce (Linz)
- Optimization of delivery runs for e-mobility (Linz, Vienna – inner cities)
- City HuB near a shopping high street (Vienna)
- E-Commerce / Home-Delivery in inner city (Vienna)
- Refrigerated logistics – e.g. for pharmaceuticals (Vienna)
Demonstration phase

- Project results will be demonstrated in the final phase of the project (2017)
- Optimized EMILIA vehicles + „standard“ battery electric / hybrid vehicles
- Well planned and executed demonstration to show:
 - Technological feasibility
 - Economic viability
 - Environmental value-added
Project data

- Project duration: 36 months (1.6.2014 – 31.5.2017)
- Total budget: 5.19 M EUR
- This project is co-funded with 2.65 M Euro by the Austrian Climate and Energy Fund and is being developed as part of the „Austrian Electric Mobility Flagship Projects“ program
THANK YOU!

Boschidar Ganev
AIT Austrian Institute of Technology GmbH
Giefinggasse 2 | 1210 Vienna | Austria
T +43(0) 50550-6518 | M +43(0) 664 88390718 | F +43(0) 50550-6595
boschidar.ganev@ait.ac.at | http://www.ait.ac.at